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I.   INTRODUCTION 

Fractional calculus is a mathematical analysis tool used to study arbitrary order derivatives and integrals. It unifies and 

extends the concepts of integer order derivatives and integrals. Generally, many scientists do not know these fractional 

integrals and derivatives, and they have not been used in pure mathematical context until recent years. However, in the past 

few decades, the fractional integrals and derivatives have frequently appeared in many scientific fields such as mechanics, 

viscoelasticity, physics, economics and engineering [1-8]. 

Until now, the definition of fractional derivative is not unique. The commonly used definitions are Riemann-Liouvellie (R-

L) fractional derivative, Caputo definition of fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, 

conformable fractional derivative, and Jumarie’s modified R-L fractional derivative [9-13]. Since Jumarie type of R-L 

fractional derivative helps to avoid non-zero fractional derivative of constant function, it is easier to use this definition to 

connect fractional calculus with classical calculus. 

In this paper, based on Jumarie’s modified R-L fractional calculus and a new multiplication of fractional analytic functions, 

we obtain a fractional integral formula. In addition, we give some examples to illustrate our result. In fact, our formula is a 

generalization of classical calculus formula. 

II.   PRELIMINARIES 

At first, we introduce the fractional calculus used in this paper. 

Definition 2.1 ([14]): Let 0 < 𝛼 ≤ 1, and 𝑥0  be a real number. The Jumarie’s modified Riemann-Liouville (R-L) 𝛼-

fractional derivative is defined by 

                                                                         ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                        (1) 

And the Jumarie type of Riemann-Liouville 𝛼-fractional integral is defined by 

                                                                           ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                                                   (2) 

where Γ( ) is the gamma function. 
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Proposition 2.2 ([15]):  If  𝛼, 𝛽, 𝑥0, 𝐶  are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                                                   (3) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝐶] = 0.                                                                                  (4) 

Definition 2.3 ([16]): If 𝑥, 𝑥0, and 𝑎𝑛 are real numbers for all 𝑛, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼 -fractional power series, that is, 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0  on some open interval 

containing 𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. Furthermore, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed 

interval [𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic 

function on [𝑎, 𝑏]. 

In the following, we introduce a new multiplication of fractional analytic functions. 

Definition 2.4 ([17]): If 0 < 𝛼 ≤ 1. Assume that 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are two 𝛼-fractional power series at 𝑥 = 𝑥0, 

                                                                                    𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ,                                                     (5) 

                                                                                   𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 .                                                     (6) 

Then  

                                                                    𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)  

                                                               = ∑
𝑎𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0 ⨂𝛼 ∑
𝑏𝑛

Γ(𝑛𝛼+1)
(𝑥 − 𝑥0)𝑛𝛼∞

𝑛=0   

                                                               = ∑
1

Γ(𝑛𝛼+1)
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (𝑥 − 𝑥0)𝑛𝛼 .                                               (7) 

Equivalently, 

                                                         𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼) 

                                                    = ∑
𝑎𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0 ⨂𝛼 ∑

𝑏𝑛

𝑛!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛
∞
𝑛=0   

                                                    = ∑
1

𝑛!
(∑ (

𝑛
𝑚

) 𝑎𝑛−𝑚𝑏𝑚
𝑛
𝑚=0 )∞

𝑛=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝛼 𝑛

 .                                              (8) 

Definition 2.5 ([18]): If 0 < 𝛼 ≤ 1, and 𝑥 is a real number. The 𝛼-fractional exponential function is defined by 

                                                                    𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑛𝛼

Γ(𝑛𝛼+1)
= ∑

1

𝑛!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑛

.∞
𝑛=0

∞
𝑛=0                                          (9) 

Theorem 2.6 (integration by parts for fractional calculus) ([19]): Suppose that 0 < 𝛼 ≤ 1, 𝑎, 𝑏 are real numbers, and 

𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are 𝛼-fractional analytic functions on an interval 𝐼 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑖𝑛𝑔 [𝑎, 𝑏], then 

         ( 𝐼𝑎 𝑏
𝛼) [𝑓𝛼(𝑥𝛼)⨂𝛼 ( 𝐷𝑎 𝑥

𝛼)[𝑔𝛼(𝑥𝛼)]] = [ 𝑓𝛼(𝑥𝛼)⨂𝛼 𝑔𝛼(𝑥𝛼)]
𝑥=𝑎

𝑥=𝑏
− ( 𝐼𝑎 𝑏

𝛼) [𝑔𝛼(𝑥𝛼)⨂𝛼 ( 𝐷𝑎 𝑥
𝛼)[𝑓𝛼(𝑥𝛼)]].       (10) 

III.   MAIN RESULT AND EXAMPLES 

In this section, we obtain a fractional integral formula involving fractional exponential function. On the other hand, some 

examples are provided to illustrate our result. 

Theorem 3.1: Let 0 < 𝛼 ≤ 1, and 𝑝, 𝑞, 𝑟 be real numbers, then the 𝛼-fractional integral 

                       ( 𝐼0 𝑥
𝛼) [(𝑟𝑝 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

+ 𝑟𝑞 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (𝑟−1)

+ 𝑝) ⨂𝛼 𝐸𝛼 ((
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

)]  
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                 = (𝑝 ∙
1

Γ(𝛼+1)
𝑥𝛼 + 𝑞) ⨂𝛼 𝐸𝛼 ((

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

) − 𝑞.                                                                                        (11) 

Proof    ( 𝐼0 𝑥
𝛼) [(𝑟𝑝 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

+ 𝑟𝑞 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (𝑟−1)

+ 𝑝) ⨂𝛼 𝐸𝛼 ((
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

)] 

= ( 𝐼0 𝑥
𝛼) [𝑟𝑝 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

⨂𝛼 𝐸𝛼 ((
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

)] + ( 𝐼0 𝑥
𝛼) [𝑟𝑞 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 (𝑟−1)

⨂𝛼 𝐸𝛼 ((
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

)]  

    +( 𝐼0 𝑥
𝛼) [𝑝⨂𝛼 𝐸𝛼 ((

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

)]  

= 𝑝 ∙ ( 𝐼0 𝑥
𝛼) [

1

Γ(𝛼+1)
𝑥𝛼⨂𝛼  ( 𝐷0 𝑥

𝛼) [𝐸𝛼 ((
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

)]] + 𝑞 ∙ ( 𝐼0 𝑥
𝛼) [( 𝐷0 𝑥

𝛼) [𝐸𝛼 ((
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

)]]  

    +𝑝 ∙ ( 𝐼0 𝑥
𝛼) [𝐸𝛼 ((

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

)]  

= 𝑝 ∙
1

Γ(𝛼+1)
𝑥𝛼⨂𝛼 𝐸𝛼 ((

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 𝛼 𝑟

) − 𝑝 ∙ ( 𝐼0 𝑥
𝛼) [𝐸𝛼 ((

1

Γ(𝛼+1)
𝑥𝛼)

⨂ 𝛼 𝑟

)] + 𝑞 ∙ 𝐸𝛼 ((
1

Γ(𝛼+1)
𝑥𝛼)

⨂ 𝛼 𝑟

) − 𝑞  

    +𝑝 ∙ ( 𝐼0 𝑥
𝛼) [𝐸𝛼 ((

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

)]  (by integration by parts for fractional calculus) 

= (𝑝 ∙
1

Γ(𝛼+1)
𝑥𝛼 + 𝑞) ⨂𝛼 𝐸𝛼 ((

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 𝑟

) − 𝑞 .                                                  Q.e.d. 

Example 3.2: If 0 < 𝛼 ≤ 1, then by Theorem 3.1 we have 

            ( 𝐼0 𝑥
𝛼) [(2 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

+ 1) ⨂𝛼 𝐸𝛼 ((
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

)] = (
1

Γ(𝛼+1)
𝑥𝛼) ⨂𝛼 𝐸𝛼 ((

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

) .        (12) 

And 

           ( 𝐼0 𝑥
𝛼) [(6 (

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 3

+ 3 (
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 2

+ 2) ⨂𝛼 𝐸𝛼 ((
1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 3

)]  

      = (2 ∙
1

Γ(𝛼+1)
𝑥𝛼 + 1) ⨂𝛼 𝐸𝛼 ((

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝛼 3

) − 1 .                                                                                                   (13) 

 

IV.   CONCLUSION 

In this paper, based on Jumarie’s modified R-L fractional calculus and a new multiplication of fractional analytic functions, 

we study a fractional integral formula involving fractional exponential function. In addition, we provide some examples to 

illustrate our result. In fact, our formula is a generalization of ordinary calculus formula. In the future, we will continue to 

use Jumarie type of R-L fractional calculus and the new multiplication of fractional analytic functions to solve problems in 

fractional differential equations and engineering mathematics. 
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